DNSSEC Key Management Policy

Edward Lewis

Neustar

DNSSEC JP!

Agenda

- What is Key Management?
- Why and Where it fits?
- Key Management in detail
- Our experience in "dotUS" and "dotBIZ"

Key Management

- I learned a lot by reading US NIST documents
 - I am not sure if the same exist in Japan
- A reading list for Key Management & DNSSEC
 - http://csrc.nist.gov/publications/PubsSPs.html
 - SP800-57, also see SP800-53, SP800-81
- Helpful information on HSM devices
 - http://csrc.nist.gov/publications/PubsFIPS.html
 - FIPS 140-2

Why Manage Keys?

- DNSSEC uses keys to produce digital signatures
- Keys are used in different ways

 Keys have "lifetimes" and cannot be considered to be "forever"

 There is a lot of debate on how long to use a key and how a key should be used

電子署名の概念

The grey box

- On the previous slide a gray box groups
 - 鍵生成
 - 署名生成
 - ランダム番号ジェネレータ
 - ハッシュ関数
- These functions may be in a software library (like OpenSSL) or may be in an Hardware Security Module (HSM)

3 ways data changes in DNSSEC

- Zone file's data changes (same in DNS)
 - New hosts/addresses/etc.
- Signatures expire (new in DNSSEC)
 - DNSSEC relies on expiration time for revocation
 - Signatures have to be "refreshed"
- Key/cryptographic material changes (also new)
 - Keys and algorithms don't last forever
 - Recovery from an attack may require new keys

HSM & DNSSEC署名手順

- HSM or software cryptographic library
 - Provides the "mathematic muscle" for cryptography
 - (non-HSM: OpenssI libraries)
- DNSSEC署名手順 signs current data with current keys
 - Puts the cryptography into DNSSEC records, zones
 - Feeds the name server

When and How (to Sign) Policy

- Decision of when to sign is governed by
 - DNSゾーンデータベース because data is changed
 - DNSSECの署名の管理 because signatures are expiring (or wall-clock alarm strikes)

- Decision of what key to use is governed by
 - DNSSECの鍵管理 has to manage the current set and changes to the next set of keys

Please Recycle

- Regarding "when to sign"
 - Generating new signatures before it is necessary to do so is discouraged
 - Zone transfers become large and name servers still are not good at juggling zone transfers and queries
- If a zone is static, let signatures live long and refresh them with short overlaps

DNSゾーンデータベース

- Changes to the zone contents will cause DNSSEC signing to happen
 - User changes to the zone (new host)
 - DNSSECの鍵管理 delivers a new 公開鍵
 - (Not shown) NSEC3 parameter is changed
- Policy
 - A zone must always have a complete set of fresh signatures. No exceptions!

DNSSECの署名の管理

- DNSSEC signatures have expiration times
 - When a signature expires it must be refreshed
 - Usually this function is built into other tools
- Policy
 - Rule of thumb, refresh signature well before expiration to give enough time to "recover" from a failure

DNSSECの鍵管理

- Determines if the existing keys are "good" or if there is a need to change
- Key Management Policy
 - Following slides
- Policy implementation
 - Requires new key pairs to be generated
 - Sends DNSゾーンデータベース new public keys
 - Rotates keys into and out of service
 - Revokes keys

Key Management Policy Aspects

- Key roles
 - Use KSK/ZSK or not? Follow RFC 5011?
- Key algorithm (and hash) and size
 - RSA SHA256? SHA1? SHA512? GOST?
 - 1024 bits or 2048 bits?
- Key lifetime
 - Duration of key "effectivity" period
 - Procedure and timing of key change

Key Roles

- Choose KSK/ZSK or just one key?
 - If the parent zone is fast and responsive, one key is good
 - But if the parent is slow, the KSK/ZSK approach is worth the management of the extra key
- KSK/ZSK
 - Assumed by DNSSEC early adopters, not a requirement
 - See RFC 4641

KSK/ZSK

```
Parent Zone
```

子ゾーン.日本 DS 12345 8 2 A057C8553....

Child Zone

```
•••
```

```
子ゾーン.日本 DNSKEY 257 ... ; keyid = 12345
子ゾーン.日本 DNSKEY 256 ... ; keyid = 32123
子ゾーン.日本 RRSIG DNSKEY ... ; by 12345
```

The ZSK

Single Key DNSSEC

- Managing 1 key is simpler than managing 2
- But only if you have a "quick" relationship with your parent zone
 - Need to change the DS record every time you change the key signing the zone
 - Or, if you never change keys...
- Since the invention of EPP, this is plausible
 - You can try it, but I still encourage KSK/ZSK

Single Key "Chain"

Parent Zone

子ゾーン.日本 DS 12345 8 2 A057C8553....

Child Zone

• • •

```
子ゾーン.日本 DNSKEY 257 ...; keyid = 12345
子ゾーン.日本 RRSIG DNSKEY ...; by 12345
```

The ZSK

RFC 5011

- Management of trust anchors
 - A new key has to be present for some time to verify it is indeed a new key
 - A revoked key is marked and signed for some time to verify the key is removed
- Intended for use where the parent zone is not signed or won't hold DS records

Key Algorithm and Size

- DSA, RSA, RSA+NSEC3, GOST
 - See http://www.iana.org/assignments/dns-secalg-numbers/dns-sec-alg-numbers.xhtml
- Hash function
 - SHA-1, SHA-256 or something else?
 - SHA-1 is considered to be "old" but still in use
- Size
 - Longer is harder to break, slower to use

The Hash Function

- SHA 1
 - Published in 1995
 - 160 bits
 - Widespread, but getting to be "breakable"
- SHA 2 (or SHA 256 or SHA 512)
 - Published in 2001
 - 224/256 or 384/512 bits
 - More bits, harder to "break"

Is longer better and slower?

- A longer key is thought to be
 - harder to "crack" so it is more secure
 - harder to process so it is less efficient
- What do cryptographers feel?
 - DNSSEC is uses a subset of cryptographic functions
 - There isn't enough use of a key to crack it, provided it is strong enough (1024 bits)
- Frankly, no one has enough experience yet

Key Lifetime

- Lifetime, from creation to deletion, comprises
 - Key effectivity period, the duration a key is used cryptographically
 - Key DNSSEC lifetime, the durations needed to publish and remove a key, DNS TTL plays a role
 - RFC 5011 impacts timing to allow detection of key changes if there is no parent signing

Key effectivity period

- There is some debate
 - DNSSEC developers thought that keys had to be changed because of cryptographic properties
 - Cryptographers have said (opinion) that keys will be good "until broken" (which is true)
 - In operations, regular changes are good because
 - Broken keys may not be detected
 - Keys cannot be revoked (RFC5011 is a special case)
 - Operational scripts need to be exercised

TTL impacts

- http://tools.ietf.org/html/draft-morris-dnsopdnssec-key-timing-02
- Assume a key is effective for 3 months
- What about DNS zone and cache propagation?
 - A new key has to be pre-published to avoid a cache with a "new data signature and old keys."
 - An old key has to hand around until all of its signatures are gone

Cache Impact

DNSSEC Basic DNSKEY cycle

- t=0 DNSKEY is added to zone
- until t=1 Some caches will have the old set
- t=1 All caches should have DNSKEY
- until t=2 Private key can make RRSIG
- t=2 private key retired
- until t=3 RRSIGs in Caches, DNSKEY needed
- t=3 DNSKEY is removed from zone

BIND key management

- In BIND 9.7 there is a new key mangement feature
 - (P)ublish is t=0
 - (A)ctivate is t=1
 - (I)nactivate is t=2
 - (D)elete is t=3

Experience in US and BIZ

- US signed in December 2009, open for DS records in June 2010
- BIZ began signing July 2010

- Both zones are using NSEC because there is no reason to use NSEC3
 - Zones can be retrieved via FTP
 - We aren't concerned about size

My personal TLD survey

- I have a script that asks for DNSKEY from the delegations in the root and in ARPA
 - Skewed by test zones in the root
 - ARPA includes e164.ARPA and other signed zones
- As of early July, 24 "real" TLDs are signed
 - I use this only for sanity checking, not reliable as a measure of overall DNSSEC adoption
 - You will see reference to "41" that includes test zones and ARPA zones

Key Roles

- We use KSK/ZSK
 - Because our parent is slow (the root), no automatic update interface and no quick turnaround
 - We plan to change keys frequently
- Survey, 40 out of 41 use KSK/ZSK
 - But that isn't surprising as we all think alike
- Single key use
 - Workable but in my opinion, not too scaleable

Key Algorithm

- No crypto system is imposed (by law) so we choose what seems best
- From the 41 signed zones in the root plus ARPA all use RSA
 - 9 zones use RSA-SHA256, rest use RSA-SHA1
- Recommendation
 - Unless you must use an algorithm for legal reasons, choose RSA-SHA256
- Don't start with RSA-SHA1 (NSEC or NSEC3!)

Key Sizes

- We have stuck to the common wisdom of a KSK of 2048 and a ZSK of 1024 bits
- Survey "the most common set up"

Role	Hash	"NSEC"	1K	2K	4 K	Odd
KSK	SHA1	NSEC	0	21	2	1
ZSK	SHA1	NSEC	23	0	0	1
KSK	SHA1	NSEC3	2	<mark>5</mark>	0	
ZSK	SHA1	NSEC3	<mark>7</mark>	1	0	
KSK	SHA256	_	0	8	0	
ZSK	SHA256	_	8	0	0	

Key Lifetime

- Key effectivity
 - 1K bit ZSK 3 months
 - 2K bit KSK 1 year
- Our parameters
 - ZSK published as a emergency key for 3 months, signs for 3 months
 - KSK is published for 1 year as the emergency and 1 year as the active (DS at root)
 - TTL is 6 days

RFC 5011 support

- We plan to support RFC 5011
 - But in reality we could just rely on the root zone to have the DS record
 - As a safety mechanism, we publish our key set on a website, so RFC 5011 support is a good thing
- No clear recommendation on RFC 5011
 - Needed if parent is not signed
 - Probably not if signed

Questions

• Questions?